Auto-Keras API详解(5)——image_supervised类

(一)前 言

在这里插入图片描述
image_supervised类是Auto-Keras中用于一个训练图像数据监督学习的基类,这一节我们将详细介绍它的主要方法和各项参数的意义。

(二)方法详解

(1)init方法

image_supervised包含的各种分类器和回归器如下:

名 称作 用
ImageClassifier用于图像的分类,它会自动为当前数据集搜索最优的卷积网络结构
ImageClassifier1D用于1D图像的分类,它会自动为当前数据集搜索最优的卷积网络结构
ImageClassifier3D用于3D图像的分类,它会自动为当前数据集搜索最优的卷积网络结构
ImageRegressor用于图像的回归,它会自动为当前数据集搜索最优的卷积网络结构
ImageRegressor1D用于1D图像的回归,它会自动为当前数据集搜索最优的卷积网络结构
ImageRegressor3D用于3D图像的回归,它会自动为当前数据集搜索最优的卷积网络结构

初始化以上方法的参数列表如下:

  • path
    存储分类器模型和中间结果的路径
  • cnn
    定义在net_moudle.py中的卷积网络模型
  • y_encoder
    标签编码器,用于把标签转换为one-hot矩阵
  • data_transformer
    一个数据处理的转换类,可以在ImageDataTransformer找到使用示例
  • verbose
    一个布尔值,决定了搜索过程是否要打印到输出设备
  • augment
    一个布尔值,决定了是否需要扩增数据,如果没有定义则会使用Constant.DATA_AUGMENTATION的值
  • searcher_args
    一个包含了搜索器初始化函数参数的字典
  • resize_height
    调整图像数据的高度
  • resize_width
    调整图像数据的宽度

(2)read_images方法

read_images方法用于用于从目录下读取图像数据并返回它们的Numpy数组实例。

  • 参数列表
    • img_file_names
      图像名称的列表
    • images_dir_path
      存储图像的路径

(3)load_image_dataset方法

load_image_dataset方法从CSV文件中读取图像的文件和标签名。这个CSV文件应该包含两列数据,分别为“文件名”和“标签”。

  • 参数列表
    • csv_file_path
      CSV文件的位置
    • images_path
      图像的存储路径

(4)export_keras_model方法

用来导出Auto-Keras训练好的模型

(5)evaluate方法

(三)总 结

在这一节中,我们介绍了image_supervised的相关方法,有任何的问题请在评论区留言,我会尽快回复,谢谢支持!

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页