Auto-Keras API详解(4)——DeepSupervised类

(一)前 言

在这里插入图片描述
DeepSupervised类是Auto-Keras中用于一个训练的基类,这一节我们将详细介绍它的主要方法和各项参数的意义。

(二)方法详解

(1)init方法

init方法用于初始化实例,当‘resume’参数为True时,分类器将会从‘path’中加载,否则就会创建一个新的模型。

  • 参数列表
    • verbose
      一个布尔值决定了网络的搜索过程是否会被打印至输出设备
    • path
      一个字符串,中间结果的存储位置
    • resume
      一个布尔值,当为‘True’时,模型会从存储在path目录下的模型继续搜索,如果为‘False’,则会开始一个新的搜索。
    • searcher_args
      一个包含了搜索器初始化函数参数的字典

(2)final_fit方法

final_fit方法用于找到最优网络后做最后的训练。

  • 参数列表
    • x
      一个Numpy数组的实例,包含了训练数据或者是训练数据与验证数据结合的数据
    • y
      一个Numpy数组的实例,包含了训练数据的标签或者是训练标签与验证标签结合的数据
    • x_test
      一个Numpy数组,包含了测试数据
    • y_test
      一个Numpy数组,包含了测试数据的标签
    • trainer_args
      一个包含了ModelTrainer结构参数的字典
    • retrain
      一个布尔值,用来决定是否重新初始化模型的权重参数

(3)export_keras_model方法

用来导出Auto-Keras训练好的模型

(4)predict方法

predict方法用来测试数据的预测值。

  • 参数列表
    • x_test
      一个Numpy数组,包含了测试数据

(5)evaluate方法

evaluate方法用来在预测值和实际值之间评估模型的精度。

  • 参数列表
    • x_test
      一个Numpy数组,包含了测试数据
    • y_test
      一个Numpy数组,包含了测试数据的标签

(三)总 结

在这一节中,我们介绍了DeepSupervised类的相关方法,有任何的问题请在评论区留言,我会尽快回复,谢谢支持!

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页