Auto-Keras API详解(3)——Supervised类

(一)前 言

在这里插入图片描述
Supervised类是Auto-Keras中用于所有监督学习任务的基类,这一节我们将详细介绍它的主要方法和各项参数的意义。

(二)方法详解

(1)fit方法

fit方法用于寻找最优的网络结构并且加以训练,这个函数会基于给定的数据集,为该数据集找到最佳的神经网络结构,数据集的格式为Numpy数据型,训练数据需要通过x_train,y_train传递。

  • 参数列表
    • x
      一个Numpy数组的实例,包含了训练数据或者是训练数据与验证数据结合的数据
    • y
      一个Numpy数组的实例,包含了训练数据的标签或者是训练标签与验证标签结合的数据
    • x_test
      一个Numpy数组,包含了测试数据
    • y_test
      一个Numpy数组,包含了测试数据的标签
    • time_limit
      搜索网络的时间限制

(2)final_fit方法

final_fit方法用于找到最优网络后做最后的训练。

  • 参数列表
    • x
      一个Numpy数组的实例,包含了训练数据或者是训练数据与验证数据结合的数据
    • y
      一个Numpy数组的实例,包含了训练数据的标签或者是训练标签与验证标签结合的数据
    • x_test
      一个Numpy数组,包含了测试数据
    • y_test
      一个Numpy数组,包含了测试数据的标签
    • trainer_args
      一个包含了ModelTrainer结构参数的字典
    • retrain
      一个布尔值,用来决定是否重新初始化模型的权重参数

(3)predict方法

predict方法用来测试数据的预测值。

  • 参数列表
    • x_test
      一个Numpy数组,包含了测试数据

(4)evaluate方法

evaluate方法用来在预测值和实际值之间评估模型的精度。

  • 参数列表
    • x_test
      一个Numpy数组,包含了测试数据
    • y_test
      一个Numpy数组,包含了测试数据的标签

(三)总 结

在这一节中,我们介绍了Supervised类的相关方法,有任何的问题请在评论区留言,我会尽快回复,谢谢支持!

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页