TensorFlow Object Detection API 技术手册(5)——制作自己的目标检测数据集

TensorFlow Object Detection API 技术手册(5)——制作自己的目标检测数据集


从这一节开始我们要开始准备训练属于自己的目标检测模型,首先就是准备属于自己的目标检测数据集

(一)收集图片

我们以制作浣熊数据集为例来展示这一过程,首先我们收集若干张浣熊的JPG格式的图像(注意是JPG格式,不要使用JPG格式以外的图像,可能会导致训练错误),如图所示:
在这里插入图片描述

(二)安装图像打标工具labelImg

labelImg是一款制作数据标签的工具,界面很友好,操作很简单,所有人都能快速上手,到GitHub下载labelImg。
在这里插入图片描述
解压文件到(**\Anaconda3\Lib\site-packages**)目录下,得到labelImg-master文件夹,进入文件夹,按住shift键,点击右键打开powershell窗口,输入下列命令:

>>>pyrcc5 -o resources.py resources.qrc

打开Anaconda Prompt(使用powershell可能需要指定python源文件位置,不然报错,读者亦可在powershell尝试输入以下命令),输入以下命令:

>>>python labelImg.py

成功打开labelImg,出现如下界面:
在这里插入图片描述
点击File,选择读取一个文件夹或是一个单独文件,再点击Change Save Dir改变输出文件的保存位置,如下图所示:
在这里插入图片描述
开始处理图像文件,点击w键,出现十字准心:
在这里插入图片描述
按住鼠标左键,选定目标框,输入目标名称:
在这里插入图片描述
划定完所有需要标记的目标后,使用快捷键Ctrl+S将表及文件保存到设定好的路径中,我们标记10例图像,标签文件如下所示:
在这里插入图片描述

(三)将XML文件转化为CSV文件

接下来我们需要将XML文件转化CSV文件,转化使用的代码如下:

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET


def xml_to_csv(path):
    xml_list = []
    for xml_file in glob.glob(path + '/*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text,
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df


def main():
    image_path = 'XML文件的位置'
    xml_df = xml_to_csv(image_path)
    xml_df.to_csv('输出位置及输出的文件名', index=None)
    print('Successfully converted xml to csv.')


main()

在这里插入图片描述
你会在源目录下找到处理好的csv文件:
在这里插入图片描述

(四)生成TFRecords文件

接下来是将CSV文件和图像数据整合为TFRecords,处理的代码如下:

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == 'pinworm':
        return 1
    else:
        None


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(csv_input, output_path, image_path):
    writer = tf.python_io.TFRecordWriter(output_path)
    path = image_path
    examples = pd.read_csv(csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    print('Successfully created the TFRecords: {}'.format(output_path))

if __name__ == '__main__':
    csv_input = 'CSV文件的位置'
    output_path = 'TFRecords的输出位置及文件名'
    image_path = '图像数据的位置'
    main(csv_input, output_path, image_path)

在使用这段代码之前,我们需要找到 def class_text_to_int(row_label) 函数,在此处设定标记目标的种类,我们只有浣熊这一类目标,所以只有只用写一个if,如果有多个目标,则增加elif语句并输入标签名,并相应地return 2、3、4,以此类推。
在这里插入图片描述
分别输入你的csv标签文件、图片的所在位置和TFRecord文件输出位置,运行成功,显示:
在这里插入图片描述
查看保存的目录:
在这里插入图片描述
测试集的创建方法类似与上述过程一样,在此不再赘述。
下一节我们开始准备训练模型的配置文件,并进行模型训练。
下一节:TensorFlow Object Detection API 技术手册(6)——模型文件配置及模型训练

相关推荐
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页