TensorFlow Lite 开发手册(4)——安装TensorFlow Lite

(一)平台支持

操作系统iOS、Android、Linux
开发平台ARM64(支持RK3399)、Raspberry Pi、iOS

(二)下载源代码

到GitHub仓库下载2.0全部代码:

wget https://github.com/tensorflow/tensorflow/archive/master.zip

解压后进入:

unzip master.zip
cd ./tensorflow/lite/tools/make/

(三)安装依赖库

(1)安装工具链

sudo apt-get install build-essential

(2)安装依赖库

./tensorflow/lite/tools/make/download_dependencies.sh

(四)编译TensorFlow Lite

在该目录下有多个**.lib**文件,根据运行环境进行编译:

# 在ARM64上运行:
bash ./tensorflow/lite/tools/make/build_aarch64_lib.sh
# 在普通Ubuntu上运行:
bash ./tensorflow/lite/tools/make/build_lib.sh

这会编译出一个静态库在:

./tensorflow/lite/tools/make/gen/aarch64_armv8-a/lib/libtensorflow-lite.a

编译时可能会提示如下错误:

/usr/bin/ld: 找不到 -lz collect2: error: ld returned 1 exit status

运行下列命令安装zlib:

sudo apt-get install zlib1g-dev
<p> <span style="font-size:16px;color:#000000;"><span style="font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;background-color:#FFFFFF;"> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> 深度学习模型对于算力要求较高,为了能在算力羸弱的移动端进行部署,必须对原模型进行量化压缩,从而提升模型的计算性能,而TensorFlow Lite是一种用于设备端推断的开源深度学习框架,其能将TensorFlow模型转换为压缩的 FlatBuffer 文件,并通过将 32 位浮点数转换为更高效的 8 位整数进行量化,以到达模型快速运算的效果 . </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> <br /> </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> 伴随着深度学习技术的广泛使用,越来越多的深度学习模型被部署到移动端或IoT设备上运行,对于从事人工智能研发的相关人员,掌握对应的移动端开发技术是十分必要的,也将对自己的职业生涯产生极大的促进作用! </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> <br /> </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> 本课程将从TensorFlow Lite的基本组件及特性讲起,并结合丰富的技术实战案例,让您深入了解并掌握TensorFlow Lite的使用方法! </div> </span></span> </p> <p> <span><span style="color:#616161;"><span style="color:#000000;font-size:16px;"></span></span></span> </p>
相关推荐
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页