TensorFlow Lite 开发手册(1)——TensorFlow 2.0安装

TensorFlow Lite开发手册 专栏收录该内容
6 篇文章 9 订阅

TensorFlow Lite 开发手册(1)——TensorFlow 2.0安装

(一) TensorFlow 2.0安装

创建虚拟环境:

conda create --name py36-tf20 python=3.6
conda activate py36-tf20

目前conda源尚已维护至2.0版本,可以使用conda命令安装:

# 安装CPU版本
conda install tensorflow

# 安装GPU版本,CUDA支持请查看TensoFlow官网
conda install tensorflow-gpu

(二) TensorFlow 2.0 新特性简介

  • API Cleanup
    移除了许多库,如tf.app,tf.logging,tf.flags等,将原有的函数库整合进了tf.keras,如tf.layers->tf.keras.layers

  • Eager execution
    在2.0中,动态图机制成为默认机制,不再需要用户手动创建会话,也不需要使用 sess.run() 来指定输入输出的张量。

  • No more globals
    不再依赖隐式全局命名空间,即不再依赖tf.Variable()来声明变量,而是采用默认机制:“ Keep track of your variables!”,如果不再追溯某个tf.Variable,其就会被回收。

  • Functions, not sessions(个人认为是很重要、也很厉害的一点)
    在2.0中提供了名为 @tf.function() 的装饰器,它可以对普通的Python函数进行标记以进行JIT编译,然后TensorFlow就可以将其作为单一的计算图来运行,这使得该函数可以直接被优化作为模型导出。并且为了帮助用户在添加**@tf.function时避免重写代码,AutoGraph将python中的一些函数转换为其TensorFlow**包含的等价函数:

  for/while -> tf.while_loop (break and continue are supported)
  if -> tf.cond
  for _ in dataset -> dataset.reduce
  • 个人补充
    在2.0中,Keras被全面整合,Google也推荐大家使用tf.keras更高效构建模型,并且使用tf.data构建数据流(有关tf.data使用的流程可以参照我的博客https://blog.csdn.net/weixin_42499236/article/category/8331677),而tf.keras保存的模型也可以直接被转换为TensorFlow Lite模型,所以还是用Keras比较好。
  • 1
    点赞
  • 3
    评论
  • 9
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
<p> <span style="font-size:16px;color:#000000;"><span style="font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;background-color:#FFFFFF;"> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> 深度学习模型对于算力要求较高,为了能在算力羸弱的移动端进行部署,必须对原模型进行量化压缩,从而提升模型的计算性能,而TensorFlow Lite是一种用于设备端推断的开源深度学习框架,其能将TensorFlow模型转换为压缩的 FlatBuffer 文件,并通过将 32 位浮点数转换为更高效的 8 位整数进行量化,以到达模型快速运算的效果 . </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> <br /> </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> 伴随着深度学习技术的广泛使用,越来越多的深度学习模型被部署到移动端或IoT设备上运行,对于从事人工智能研发的相关人员,掌握对应的移动端开发技术是十分必要的,也将对自己的职业生涯产生极大的促进作用! </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> <br /> </div> <div style="margin:0px;padding:0px;border:0px;font-family:Tahoma, Arial, STHeiti, SimSun;font-size:14px;"> 本课程将从TensorFlow Lite的基本组件及特性讲起,并结合丰富的技术实战案例,让您深入了解并掌握TensorFlow Lite的使用方法! </div> </span></span> </p> <p> <span><span style="color:#616161;"><span style="color:#000000;font-size:16px;"></span></span></span> </p>
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值